博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
u-boot中添加mtdparts支持以及Linux的分区设置
阅读量:7079 次
发布时间:2019-06-28

本文共 22413 字,大约阅读时间需要 74 分钟。

简介

作者:彭东林

邮箱:

 

u-boot版本:u-boot-2015.04

Linux版本:Linux-3.14

硬件平台:tq2440, 内存:64M   NandFlash: 256MB

 

下面我们分两部分,u-boot和kernel,首先介绍u-boot中是如何支持mtdparts的,然后简单分析Linux内核设置分区的两种方式:

方式一

    在平台代码中写死,然后在初始化NandFlash的时候设置。

方式二

    在u-boot中设置,这个比较灵活,u-boot将分区信息(形如:mtdparts=xxx)添加到bootargs中,kernel在启动的时候会解析mtdparts。

u-boot中支持mtdparts命令

转载自:

分区方法

     1)MTD层的分区

     2)通过U-boot传递给内核的命令行中的mtdparts=...

     3)其他可以让内核知道分区信息的任何办法,(内核默认的命令参数)

下面说到mtdparts,及它的用法:

   mtdparts

   mtdparts=fc000000.nor_flash:1920k(linux),128k(fdt),20M(ramdisk),4M(jffs2),38272k(user),256k(env),384k(uboot)要想这个参数起作用,

内核中的mtd驱动必须要支持,即内核配置时需要选上

       Device Drivers  --->

            Memory Technology Device (MTD) support  --->

                Command line partition table parsing

mtdparts的格式如下:

    mtdparts=<mtddef>[;<mtddef]

    <mtddef>  := <mtd-id>:<partdef>[,<partdef>]

    <partdef> := <size>[@offset][<name>][ro]

    <mtd-id>  := unique id used in mapping driver/device

    <size>    := standard linux memsize OR "-" to denote all remaining space

    <name>    := (NAME)

因此你在使用的时候需要按照下面的格式来设置:

     mtdparts=mtd-id:<size1>@<offset1>(<name1>),<size2>@<offset2>(<name2>)

这有几个需要注意的地方:

      a.mtd-id 必须要跟你当前平台的flash的mtd-id一致,不然整个mtdparts会失效 怎样获取到当前平台的flash的mtd-id?在bootargs参数列表中,可以指定当前flash的mtd-id,指定 mtdid

s:nand0=gen_nand.1,前面的nand0则表示第一个flash

      b.size在设置的时候可以为实际的size(xxM,xxk,xx),也可以为'-'这表示剩余的所有空间。相

关信息可以查看drivers/mtd/cmdlinepart.c中的注释找到相关描述。

       U-boot环境变量有两个,他们分别是: bootcmd 和bootargs。

至于在我们自己的at91sam9263ek板子上为了实现mtdparts分区命令的支持需要在U-boot

-2010.06/include/configs/at91sam9263ek.h中添加相关的宏定义:

#define CONFIG_CMD_MTDPARTS

#define CONFIG_MTD_DEVICE

#define CONFIG_MTD_PARTITIONS

加入MTD分区信息:

#define MTDIDS_DEFAULT "nand0=atmel_nand"

#define MTDPARTS_DEFAULT            "mtdparts=atmel_nand:15M@0(cramfs)," \

                                    "15M(jffs2)," \

                                    "30M(yaffs2)," \

                                    "-(user)"

保存后退出,回到根目录,重新make

[root@localhost u-boot-2010.06]#make at91sam9263ek_dataflash_cs0_config

[root@localhost u-boot-2010.06]#make all

将重新编译的u-boot.bin烧到dataflash中,使用mtdparts查看分区:

U-Boot> mtdparts

device nand0 <atmel_nand>, # parts = 4

#: name               size           offset         mask_flags

0: cramfs             0x00f00000     0x00000000     0

1: jffs2              0x00f00000     0x00f00000     0

2: yaffs2             0x01e00000     0x01e00000     0

3: user               0x04400000     0x03c00000     0

active partition: nand0,0 - (cramfs) 0x00f00000 @ 0x00000000

defaults:

mtdids : nand0=atmel_nand

mtdparts: mtdparts=atmel_nand:15M@0(cramfs),15M(jffs2),30M(yaffs2),-(user)

        重新设置分区:

U-Boot> setenv mtdparts mtdparts=atmel_nand:30M@0(a),30M(b),-(c)

U-Boot> save

Saving Environment to dataflash...

U-Boot> mtdparts

device nand0 <atmel_nand>, # parts = 3

#: name               size           offset         mask_flags

0: a                  0x01e00000     0x00000000     0

1: b                  0x01e00000     0x01e00000     0

2: c                  0x04400000     0x03c00000     0

active partition: nand0,0 - (a) 0x01e00000 @ 0x00000000

defaults:

mtdids : nand0=atmel_nand

mtdparts: mtdparts=atmel_nand:15M@0(cramfs),15M(jffs2),30M(yaffs2),-(user)

        可以看到,我们可以手动设置分区了。最后还要恢复默认。

U-Boot>mtdparts default

 

Kernel中设置分区

相关的内核代码我已经上传到csdn上了,使用git管理,分支是transplant_to_tq2440

git clone

在此之前我们先看看NandFlash是如何初始化的。

这里采用platform_device和platform_driver架构。

1. platform_device的注册

在arch/arm/mach-s3c24xx/mach-tq2440.c中:

1:  static struct platform_device *tq2440_devices[] __initdata = {
2:                  ......
3:      &s3c_device_nand,
4:  };
5:   
6:  static void __init tq2440_machine_init(void)
7:  {
8:                 ......
9:      s3c_nand_set_platdata(&tq2440_nand_info);
10:      platform_add_devices(tq2440_devices, ARRAY_SIZE(tq2440_devices));
11:                  ......
12:  }
13:   
14:  MACHINE_START(TQ2440, "TQ2440")
15:                  ........
16:      .init_machine    = tq2440_machine_init,
17:                  ......
18:  MACHINE_END

第5行是nand控制器的platform_device;

第10行platform_add_device会将s3c_device_nand注册到系统中;

第9行设置的就是分区相关的信息

1:  /* NAND parititon */
2:   
3:  static struct mtd_partition tq2440_nand_part[] = {
4:      [0] = {
5:          .name    = "Boot",
6:          .offset = 0,
7:          .size    = SZ_2M,
8:      },
9:      [1] = {
10:          .name    = "Kernel",
11:          .offset    = SZ_2M,
12:          .size    = SZ_1M * 3,
13:      },
14:      [2] = {
15:          .name    = "Rootfs",
16:          .offset = SZ_1M * 5,
17:          .size    = MTDPART_SIZ_FULL,
18:      }
19:  };
20:   
21:  static struct s3c2410_nand_set tq2440_nand_sets[] = {
22:      [0] = {
23:          .name        = "NAND",
24:          .nr_chips    = 1,
25:          .nr_partitions    = ARRAY_SIZE(tq2440_nand_part),
26:          .partitions    = tq2440_nand_part,
27:      },
28:  };
29:   
30:  /* choose a set of timings which should suit most 512Mbit
31:   * chips and beyond.
32:  */
33:   
34:  static struct s3c2410_platform_nand tq2440_nand_info = {
35:      .tacls        = 10,
36:      .twrph0        = 25,
37:      .twrph1        = 10,
38:      .nr_sets    = ARRAY_SIZE(tq2440_nand_sets),
39:      .sets        = tq2440_nand_sets,
40:  };

3行的结构体tq2440_nand_part就是分区信息,容易看出,这里一共分了3个区,分别是Boot、Kernel和Rootfs:

Boot

(2MB)

Kernel

(3MB)

Rootfs

(剩余)

然后将这个分区表存放到了第21行的tq2440_nand_set的元素[0]中,分区表的名字”NAND”,注意这里的名字很重要,将来u-boot中传入的mtdparts中的mtd-id一致。tq2440_nand_sets的每一个元素存放一张分区表;

第34行的结构体tq2440_nand_info中的tacls/twrph0/twrph1用于控制Nand控制器读写NandFlash时的时序参数。

s3c_device_nand是在文件arch/arm/plat-samsung/devs.c

1:  /* NAND */
2:   
3:  #ifdef CONFIG_S3C_DEV_NAND
4:  static struct resource s3c_nand_resource[] = {
5:      [0] = DEFINE_RES_MEM(S3C_PA_NAND, SZ_1M),
6:  };
7:   
8:  struct platform_device s3c_device_nand = {
9:      .name        = "s3c2410-nand",
10:      .id        = -1,
11:      .num_resources    = ARRAY_SIZE(s3c_nand_resource),
12:      .resource    = s3c_nand_resource,
13:  };
14:   
15:  /*
16:   * s3c_nand_copy_set() - copy nand set data
17:   * @set: The new structure, directly copied from the old.
18:   *
19:   * Copy all the fields from the NAND set field from what is probably __initdata
20:   * to new kernel memory. The code returns 0 if the copy happened correctly or
21:   * an error code for the calling function to display.
22:   *
23:   * Note, we currently do not try and look to see if we've already copied the
24:   * data in a previous set.
25:   */
26:  static int __init s3c_nand_copy_set(struct s3c2410_nand_set *set)
27:  {
28:      void *ptr;
29:      int size;
30:   
31:      size = sizeof(struct mtd_partition) * set->nr_partitions;
32:      if (size) {
33:          ptr = kmemdup(set->partitions, size, GFP_KERNEL);
34:          set->partitions = ptr;
35:   
36:          if (!ptr)
37:              return -ENOMEM;
38:      }
39:   
40:      if (set->nr_map && set->nr_chips) {
41:          size = sizeof(int) * set->nr_chips;
42:          ptr = kmemdup(set->nr_map, size, GFP_KERNEL);
43:          set->nr_map = ptr;
44:   
45:          if (!ptr)
46:              return -ENOMEM;
47:      }
48:   
49:      if (set->ecc_layout) {
50:          ptr = kmemdup(set->ecc_layout,
51:                    sizeof(struct nand_ecclayout), GFP_KERNEL);
52:          set->ecc_layout = ptr;
53:   
54:          if (!ptr)
55:              return -ENOMEM;
56:      }
57:   
58:      return 0;
59:  }
60:   
61:  void __init s3c_nand_set_platdata(struct s3c2410_platform_nand *nand)
62:  {
63:      struct s3c2410_platform_nand *npd;
64:      int size;
65:      int ret;
66:   
67:      /* note, if we get a failure in allocation, we simply drop out of the
68:       * function. If there is so little memory available at initialisation
69:       * time then there is little chance the system is going to run.
70:       */
71:   
72:      npd = s3c_set_platdata(nand, sizeof(struct s3c2410_platform_nand),
73:                  &s3c_device_nand);
74:      if (!npd)
75:          return;
76:   
77:      /* now see if we need to copy any of the nand set data */
78:   
79:      size = sizeof(struct s3c2410_nand_set) * npd->nr_sets;
80:      if (size) {
81:          struct s3c2410_nand_set *from = npd->sets;
82:          struct s3c2410_nand_set *to;
83:          int i;
84:   
85:          to = kmemdup(from, size, GFP_KERNEL);
86:          npd->sets = to;    /* set, even if we failed */
87:   
88:          if (!to) {
89:              printk(KERN_ERR "%s: no memory for sets\n", __func__);
90:              return;
91:          }
92:   
93:          for (i = 0; i < npd->nr_sets; i++) {
94:              ret = s3c_nand_copy_set(to);
95:              if (ret) {
96:                  printk(KERN_ERR "%s: failed to copy set %d\n",
97:                  __func__, i);
98:                  return;
99:              }
100:              to++;
101:          }
102:      }
103:  }
104:  #endif /* CONFIG_S3C_DEV_NAND */

第72行将nand(也就是tq2440_nand_info)的副本存放到s3c_device_nand的dev.platform_data中,然后将nand的副本首地址npd返回;

第79行到第100行将tq2440_nand_info的分区信息拷贝一份,赋值给npd的sets成员;

2. platform_driver的注册

文件:drivers/mtd/nand/s3c2410.c

1:  /* driver device registration */
2:   
3:  static struct platform_device_id s3c24xx_driver_ids[] = {
4:      {
5:          .name        = "s3c2410-nand",
6:          .driver_data    = TYPE_S3C2410,
7:      }, {
8:          .name        = "s3c2440-nand",
9:          .driver_data    = TYPE_S3C2440,
10:      }, {
11:          .name        = "s3c2412-nand",
12:          .driver_data    = TYPE_S3C2412,
13:      }, {
14:          .name        = "s3c6400-nand",
15:          .driver_data    = TYPE_S3C2412, /* compatible with 2412 */
16:      },
17:      { }
18:  };
19:   
20:  MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
21:   
22:  static struct platform_driver s3c24xx_nand_driver = {
23:      .probe        = s3c24xx_nand_probe,
24:      .remove        = s3c24xx_nand_remove,
25:      .suspend    = s3c24xx_nand_suspend,
26:      .resume        = s3c24xx_nand_resume,
27:      .id_table    = s3c24xx_driver_ids,
28:      .driver        = {
29:          .name    = "s3c24xx-nand",
30:          .owner    = THIS_MODULE,
31:      },
32:  };
33:   
34:  module_platform_driver(s3c24xx_nand_driver);

当注册s3c24xx_nand_driver的时候,由于s3c24xx_driver_ids中的”s3c2410-nand”与s3c_device_nand的name一致,因此函数s3c24xx_nand_probe被执行。

下面我们简要分析函数s3c24xx_nand_probe的实现:

1:  /* s3c24xx_nand_probe
2:   *
3:   * called by device layer when it finds a device matching
4:   * one our driver can handled. This code checks to see if
5:   * it can allocate all necessary resources then calls the
6:   * nand layer to look for devices
7:  */
8:  static int s3c24xx_nand_probe(struct platform_device *pdev)
9:  {
10:      struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
11:      enum s3c_cpu_type cpu_type;
12:      struct s3c2410_nand_info *info;
13:      struct s3c2410_nand_mtd *nmtd;
14:      struct s3c2410_nand_set *sets;
15:      struct resource *res;
16:      int err = 0;
17:      int size;
18:      int nr_sets;
19:      int setno;
20:   
21:      cpu_type = platform_get_device_id(pdev)->driver_data;
22:   
23:      pr_debug("s3c2410_nand_probe(%p)\n", pdev);
24:   
25:      info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
26:      if (info == NULL) {
27:          err = -ENOMEM;
28:          goto exit_error;
29:      }
30:   
31:      platform_set_drvdata(pdev, info);
32:   
33:      spin_lock_init(&info->controller.lock);
34:      init_waitqueue_head(&info->controller.wq);
35:   
36:      /* get the clock source and enable it */
37:   
38:      info->clk = devm_clk_get(&pdev->dev, "nand");
39:      if (IS_ERR(info->clk)) {
40:          dev_err(&pdev->dev, "failed to get clock\n");
41:          err = -ENOENT;
42:          goto exit_error;
43:      }
44:   
45:      s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
46:   
47:      /* allocate and map the resource */
48:   
49:      /* currently we assume we have the one resource */
50:      res = pdev->resource;
51:      size = resource_size(res);
52:   
53:      info->device    = &pdev->dev;
54:      info->platform    = plat;
55:      info->cpu_type    = cpu_type;
56:   
57:      info->regs = devm_ioremap_resource(&pdev->dev, res);
58:      if (IS_ERR(info->regs)) {
59:          err = PTR_ERR(info->regs);
60:          goto exit_error;
61:      }
62:   
63:      dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
64:   
65:      /* initialise the hardware */
66:   
67:      err = s3c2410_nand_inithw(info);
68:      if (err != 0)
69:          goto exit_error;
70:   
71:      sets = (plat != NULL) ? plat->sets : NULL;
72:      nr_sets = (plat != NULL) ? plat->nr_sets : 1;
73:   
74:      info->mtd_count = nr_sets;
75:   
76:      /* allocate our information */
77:   
78:      size = nr_sets * sizeof(*info->mtds);
79:      info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
80:      if (info->mtds == NULL) {
81:          err = -ENOMEM;
82:          goto exit_error;
83:      }
84:   
85:      /* initialise all possible chips */
86:   
87:      nmtd = info->mtds;
88:   
89:      for (setno = 0; setno < nr_sets; setno++, nmtd++) {
90:          pr_debug("initialising set %d (%p, info %p)\n",
91:               setno, nmtd, info);
92:   
93:          s3c2410_nand_init_chip(info, nmtd, sets);
94:   
95:          nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
96:                           (sets) ? sets->nr_chips : 1,
97:                           NULL);
98:   
99:          if (nmtd->scan_res == 0) {
100:              s3c2410_nand_update_chip(info, nmtd);
101:              nand_scan_tail(&nmtd->mtd);
102:              s3c2410_nand_add_partition(info, nmtd, sets);
103:          }
104:   
105:          if (sets != NULL)
106:              sets++;
107:      }
108:   
109:      err = s3c2410_nand_cpufreq_register(info);
110:      if (err < 0) {
111:          dev_err(&pdev->dev, "failed to init cpufreq support\n");
112:          goto exit_error;
113:      }
114:   
115:      if (allow_clk_suspend(info)) {
116:          dev_info(&pdev->dev, "clock idle support enabled\n");
117:          s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
118:      }
119:   
120:      pr_debug("initialised ok\n");
121:      return 0;
122:   
123:   exit_error:
124:      s3c24xx_nand_remove(pdev);
125:   
126:      if (err == 0)
127:          err = -EINVAL;
128:      return err;
129:  }

第10行,获得tq2440_nand_info,其实是它的副本;

第21行,cpu_type是TYPE_S3C2410;

第38行,获得nand控制器的时钟;

第45行,使能nand控制器的时钟;

第67行,初始化nand控制器;

第72行,nr_sets的值是1;

第93行,根据cpu_type的设置初始化一些函数指针,如读函数、写函数以及片选函数;

第95行,读取NandFlash的ID,以及容量、规格(如pagesize),成功返回0;

第100行,设置一些关于ecc的信息;

第101行,设置一些关于oob读写的信息;

下面重点分析第102行的函数:s3c2410_nand_add_partition

1:  static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
2:                        struct s3c2410_nand_mtd *mtd,
3:                        struct s3c2410_nand_set *set)
4:  {
5:      if (set) {
6:          mtd->mtd.name = set->name;
7:   
8:          return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
9:                       set->partitions, set->nr_partitions);
10:      }
11:   
12:      return -ENODEV;
13:  }

第6行的set->name就是”Nand”

第9行的set->partitions中存放的是分区表,set->nr_partitions存放的是这个分区表的包含的分区个数

1:  int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
2:                    struct mtd_part_parser_data *parser_data,
3:                    const struct mtd_partition *parts,
4:                    int nr_parts)
5:  {
6:      int err;
7:      struct mtd_partition *real_parts;
8:   
9:      err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
10:      if (err <= 0 && nr_parts && parts) {
11:          real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
12:                       GFP_KERNEL);
13:          if (!real_parts)
14:              err = -ENOMEM;
15:          else
16:              err = nr_parts;
17:      }
18:   
19:      if (err > 0) {
20:          err = add_mtd_partitions(mtd, real_parts, err);
21:          kfree(real_parts);
22:      } else if (err == 0) {
23:          err = add_mtd_device(mtd);
24:          if (err == 1)
25:              err = -ENODEV;
26:      }
27:   
28:      return err;
29:  }

第9行,parse_mtd_partitions用于解析命令行中设置的分区,如果命令行中没有设置mtdparts,那么返回0,如果设置了,并且解析没问题,那么返回大于零的数(也就是解析到的分区的个数),否则返回小于零的数。  

如果没有设置mtdparts或者解析失败,那么real_parts就来自代码中写好的分区。然后,调用add_mtd_partitions添加分区。

下面我们看一下parse_mtd_partitions的实现:

1: int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
2:              struct mtd_partition **pparts,
3:              struct mtd_part_parser_data *data)
4: {
5:     struct mtd_part_parser *parser;
6:     int ret = 0;
7: 
8:     if (!types)
9:         types = default_mtd_part_types;
10: 
11:     for ( ; ret <= 0 && *types; types++) {
12:         parser = get_partition_parser(*types);
13:         if (!parser && !request_module("%s", *types))
14:             parser = get_partition_parser(*types);
15:         if (!parser)
16:             continue;
17:         ret = (*parser->parse_fn)(master, pparts, data);
18:         put_partition_parser(parser);
19:         if (ret > 0) {
20:             printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
21:                    ret, parser->name, master->name);
22:             break;
23:         }
24:     }
25:     return ret;
26: }

传入参数types是NULL,所以types赋值为default_mtd_part_types,即

static const char * const default_mtd_part_types[] = {
"cmdlinepart",
"ofpart",
NULL
};

然后将”cmdlinepart”传递给函数get_partition_parser,这个函数返回名为”cmdlinepart”的解析器,然后在第17行调用这个解析器的解析函数,给pparts赋值,并返回分区个数。get_partition_parser的实现很简单:

1: static struct mtd_part_parser *get_partition_parser(const char *name)
2: {
3:     struct mtd_part_parser *p, *ret = NULL;
4: 
5:     spin_lock(&part_parser_lock);
6: 
7:     list_for_each_entry(p, &part_parsers, list)
8:         if (!strcmp(p->name, name) && try_module_get(p->owner)) {
9:             ret = p;
10:             break;
11:         }
12: 
13:     spin_unlock(&part_parser_lock);
14: 
15:     return ret;
16: }
第7行遍历part_parsers,所有的解析器都存放在链表part_parsers中,然后比较解析器的name。那么接下来就需要看part_parsers的成员的来源。
名为”cmdlinepart”的解析器是在文件drivers/mtd/cmdlinepart.c中注册的,需要配置内核,将这个文件编译进内核。
Device Drivers  --->
 
  <*> Memory Technology Device (MTD) support  --->
       <*>   Command line partition table parsing

假设u-boot传入的bootargs的值是:

noinitrd root=/dev/mtdblock3 rootfstype=yaffs2  init=/linuxrc console=ttySAC0,115200n mtdparts=tq2440-0:1m@0(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs)

其中,根据经验,内核中一定会有类似 __setup(“mtdparts=”, xxx)的结果,其实就在文件cmdlinepart.c中:

1: static int __init mtdpart_setup(char *s)
2: {
3:     cmdline = s;
4:     return 1;
5: }
6: 
7: __setup("mtdparts=", mtdpart_setup);

所以当遇到“mtdparts=tq2440-0:1m@0(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs)”时,函数mtdpart_setup就会被调用,并将mtdparts的值作为参数,所以cmdline就指向”tq2440-0:1m@0(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs)”.

下面是解析器的注册:

1: static struct mtd_part_parser cmdline_parser = {
2:     .owner = THIS_MODULE,
3:     .parse_fn = parse_cmdline_partitions,
4:     .name = "cmdlinepart",
5: };
6: 
7: static int __init cmdline_parser_init(void)
8: {
9:     if (mtdparts)
10:         mtdpart_setup(mtdparts);
11:     register_mtd_parser(&cmdline_parser);
12:     return 0;
13: }
14: 
15: module_init(cmdline_parser_init);

第11行调用了注册函数

第3行就是解析器的解析函数,他负责解析cmdline,并给pparts赋值。

1: static int parse_cmdline_partitions(struct mtd_info *master,
2:                     struct mtd_partition **pparts,
3:                     struct mtd_part_parser_data *data)
4: {
5:     unsigned long long offset;
6:     int i, err;
7:     struct cmdline_mtd_partition *part;
8:     const char *mtd_id = master->name;
9: 
10:     /* parse command line */
11:     if (!cmdline_parsed) {
12:         err = mtdpart_setup_real(cmdline);
13:         if (err)
14:             return err;
15:     }
16: 
17:     /*
18:      * Search for the partition definition matching master->name.
19:      * If master->name is not set, stop at first partition definition.
20:      */
21:     for (part = partitions; part; part = part->next) {
22:         if ((!mtd_id) || (!strcmp(part->mtd_id, mtd_id)))
23:             break;
24:     }
25: 
26:     if (!part)
27:         return 0;
28: 
29:     for (i = 0, offset = 0; i < part->num_parts; i++) {
30:         if (part->parts[i].offset == OFFSET_CONTINUOUS)
31:             part->parts[i].offset = offset;
32:         else
33:             offset = part->parts[i].offset;
34: 
35:         if (part->parts[i].size == SIZE_REMAINING)
36:             part->parts[i].size = master->size - offset;
37: 
38:         if (offset + part->parts[i].size > master->size) {
39:             printk(KERN_WARNING ERRP
40:                    "%s: partitioning exceeds flash size, truncating\n",
41:                    part->mtd_id);
42:             part->parts[i].size = master->size - offset;
43:         }
44:         offset += part->parts[i].size;
45: 
46:         if (part->parts[i].size == 0) {
47:             printk(KERN_WARNING ERRP
48:                    "%s: skipping zero sized partition\n",
49:                    part->mtd_id);
50:             part->num_parts--;
51:             memmove(&part->parts[i], &part->parts[i + 1],
52:                 sizeof(*part->parts) * (part->num_parts - i));
53:             i--;
54:         }
55:     }
56: 
57:     *pparts = kmemdup(part->parts, sizeof(*part->parts) * part->num_parts,
58:               GFP_KERNEL);
59:     if (!*pparts)
60:         return -ENOMEM;
61: 
62:     return part->num_parts;
63: }

第8行,将master->name的值赋值给mtd_id,根据上面的代码可以知道,master->id就是”Nand”;

第12行,解析cmdline,并构造相关的结构体,解析出来的分区添加到链表partitions中,对于我们的例子:

tq2440-0:1m@0(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs)

一共有4个分区:

分区表名字: tq2440-0

分区1:spl   0x0 --- 0x100000  只读

分区2:u-boot 0x100000 --- 0x200000 只读

分区3:kernel 0x200000 --- 0x500000 只读

分区4:rootfs 0x500000 --- 0x10000000

第21行到24行,比较从mtdparts中解析到的mtd_id与master->id,如果不相等,最终第26行的part就是NULL,返回零。否则,将解析到的分区表存放到pparts中,并返回分区个数。

解析完分区表后,紧接着就调用了函数add_mtd_partitions,这个函数完成了分区的设置。有兴趣可以分析一下这个函数的实现,他的参数real_parts可以来自mtdparts,也可以来自平台代码。

代码先分析到这里,接下来说一下如果要支持mtdparts,需要注意的一些问题:

1. 分区表的名字要一致

如,我们的例子是 mtdparts=tq2440-0:1m@0(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs),这里mtd_id的值是tq2440-0,那么在kernel的平台代码中也必须有一个名为tq2440-0的分区表,平台代码中的那张分区表可以为空,因为如果mtdparts中已经有了,就不会解析平台代码中设置的分区表,但是分区表的名字还是要匹配的。kernel中默认的分区表的名字是“Nand”:

static struct s3c2410_nand_set tq2440_nand_sets[] = {    [0] = {        .name        = "NAND",        .nr_chips    = 1,        .nr_partitions    = ARRAY_SIZE(tq2440_nand_part),        .partitions    = tq2440_nand_part,    },};

所以, 为了保持一致,可以修改这里的name,改成如下所示:

static struct s3c2410_nand_set tq2440_nand_sets[] = {
[0] = {
.name        = "tq2440-0",
.nr_chips    = 1,
.nr_partitions    = ARRAY_SIZE(tq2440_nand_part),
.partitions    = tq2440_nand_part,
},
};

可以将mtdparts设置的值与平台代码汇总

2. mtdparts的设置

mtdparts=tq2440-0:1m@0(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs)

等价于

mtdparts=tq2440-0:1m(spl)ro,1m(u-boot)ro,3m(kernel)ro,-(rootfs)

 

 

完。

你可能感兴趣的文章
Dom vs Canvas (译)
查看>>
洛谷P2633 王后万岁
查看>>
整理了一些t-sql技巧
查看>>
一键安装docker-ce
查看>>
java mybatis使用 设置resultType查询对象字段为null
查看>>
【转】mysql对large page的支持
查看>>
11-unittest
查看>>
学习OpenSeadragon之四(导航视图)
查看>>
PHP表单数据写入MySQL代码
查看>>
ASP.NET:Session对并发访问的影响
查看>>
Insertion sort list
查看>>
centos7 安装java+tomcat
查看>>
Uncaught TypeError: form.attr is not a function 解决办法
查看>>
HDU 1023 Train Problem II( 大数卡特兰 )
查看>>
图片的画图板
查看>>
Activex、OLE、COM、OCX、DLL之间的区别(转)
查看>>
MYSQL远程登录权限设置 ,可以让Navicat远程连接服务器的数据库
查看>>
ajax跨域
查看>>
Linux下Tomcat复制一个新的文件夹后无法启动的问题
查看>>
Linux编程 16 文件权限(组管理 groupadd, groupmod,文件权限介绍)
查看>>